Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosensors (Basel) ; 11(10)2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34677313

RESUMO

In this study, we constructed a recombinant Escherichia coli strain with different promoters inserted between the chromate-sensing regulator chrB and the reporter gene luxAB to sense low hexavalent chromium (Cr(VI)) concentrations (<0.05 mg/L); subsequently, its biosensor characteristics (sensitivity, selectivity, and specificity) for measuring Cr(VI) in various water bodies were evaluated. The luminescence intensity of each biosensor depended on pH, temperature, detection time, coexisting carbon source, coexisting ion, Cr(VI) oxyanion form, Cr(VI) concentration, cell type, and type of medium. Recombinant lux-expressing E. coli with the T7 promoter (T7-lux-E. coli, limit of detection (LOD) = 0.0005 mg/L) had the highest luminescence intensity or was the most sensitive for Cr(VI) detection, followed by E. coli with the T3 promoter (T3-lux-E. coli, LOD = 0.001 mg/L) and that with the SP6 promoter (SP6-lux-E. coli, LOD = 0.005 mg/L). All biosensors could be used to determine whether the Cr(VI) standard was met in terms of water quality, even when using thawing frozen cells as biosensors after 90-day cryogenic storage. The SP6-lux-E. coli biosensor had the shortest detection time (0.5 h) and the highest adaptability to environmental interference. The T7-lux-E. coli biosensor-with the optimal LOD, a wide measurement range (0.0005-0.5 mg/L), and low deviation (-5.0-7.9%) in detecting Cr(VI) from industrial effluents, domestic effluents, and surface water-is an efficient Cr(VI) biosensor. This unprecedented study is to evaluate recombinant lux E. coli with dissimilar promoters for their possible practice in Cr(VI) measurement in water bodies, and the biosensor performance is clearly superior to that of past systems in terms of detection time, LOD, and detection deviation for real water samples.


Assuntos
Técnicas Biossensoriais , Cromo/análise , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Bioensaio , Escherichia coli , Limite de Detecção , Medições Luminescentes , Água
2.
Artigo em Inglês | MEDLINE | ID: mdl-34422079

RESUMO

To obtain a potential commercial product with floral fragrance and physiological properties from Jasminum sambac flower extracts, enfleurage was conducted for a short time and followed by further extraction through supercritical fluid extraction (SFE). The product extracted through SFE (called 100%SFE) exhibited low physiological activity (including 50.7% antityrosinase activity, 38.6%-45.9% radical scavenging activity, and 6,518-15,003 mg/L half-maximal inhibitory concentration [IC50] of antioxidant activity) and an intense jasmine-like flavor but was nontoxic to CCD-996SK and HEMn cells. By contrast, the residue (called RO) exhibited high physiological activity (94.2%-100%), light jasmine-like flavor, and slight cytotoxicity at the concentration of 4,000 mg/L. When 100%SFE and RO were mixed in the ratio 2 : 8, the resultant mixture exhibited 100% antityrosinase activity, >91.3% radical scavenging activity, strong antioxidant activity (IC50: 273-421 mg/L), high total phenolic content (172.15 mg-GAE/g-extract), noncytotoxicity, and moderately intense jasmine-like flavor; it is also economically competitive. The major antioxidants in these extracts were revealed through gas chromatography-mass spectroscopy (GC-MS). Additionally, the composition and quality of fragrance were confirmed through GC-MS and sensory evaluation, respectively. The major fragrance components in the 2 : 8 extract mixture were benzyl acetate, ß-pinene, pentadecyl-2-propyl ester, citronellol, jasminolactone, linalool, farnesol, and jasmone. On the basis of the results, we strongly suggest that the 2 : 8 mixture of extracts from J. sambac flowers can be a powerful antioxidant, whitening, and nontoxic ingredient that can be employed in the pharmaceutical, cosmeceutical, and food industries.

3.
J Biol Eng ; 15(1): 2, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407661

RESUMO

In this study, we constructed recombinant luminescent Escherichia coli with T7, T3, and SP6 promoters inserted between tol and lux genes as toluene biosensors and evaluated their sensitivity, selectivity, and specificity for measuring bioavailable toluene in groundwater and river water. The luminescence intensity of each biosensor depended on temperature, incubation time, ionic strength, and concentrations of toluene and coexisting organic compounds. Toluene induced the highest luminescence intensity in recombinant lux-expressing E. coli with the T7 promoter [T7-lux-E. coli, limit of detection (LOD) = 0.05 µM], followed by that in E. coli with the T3 promoter (T3-lux-E. coli, LOD = 0.2 µM) and SP6 promoter (SP6-lux-E. coli, LOD = 0.5 µM). Luminescence may have been synergistically or antagonistically affected by coexisting organic compounds other than toluene; nevertheless, low concentrations of benzoate and toluene analogs had no such effect. In reproducibility experiments, the biosensors had low relative standard deviation (4.3-5.8%). SP6-lux-E. coli demonstrated high adaptability to environmental interference. T7-lux-E. coli biosensor-with low LOD, wide measurement range (0.05-500 µM), and acceptable deviation (- 14.3 to 9.1%)-is an efficient toluene biosensor. This is the first study evaluating recombinant lux E. coli with different promoters for their potential application in toluene measurement in actual water bodies.

4.
Biosensors (Basel) ; 11(1)2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33374317

RESUMO

Coliform bacteria are indicators of water quality; however, most detection methods for coliform bacteria are time-consuming and nonspecific. Here, we developed a fluorescence in situ hybridization (FISH) approach to detect four types of coliform bacteria, including Escherichia coli, Klebsiella pneumoniae, Enterobacter aerogenes, and Citrobacter freundii, simultaneously in water samples using specific probes for 16S rRNA. This FISH method was applied to detect coliform bacteria in simulated water and domestic wastewater samples and compared with traditional detection methods (e.g., plate counting, multiple-tube fermentation (MTF) technique, and membrane filter (MF) technique). Optimal FISH conditions for detecting the four types of coliforms were found to be fixation in 3% paraformaldehyde at 4 °C for 2 h and hybridization at 50 °C for 1.5 h. By comparing FISH with plate counting, MTF, MF, and a commercial detection kit, we found that FISH had the shortest detection time and highest accuracy for the identification of coliform bacteria in simulated water and domestic wastewater samples. Moreover, the developed method could simultaneously detect individual species and concentrations of coliform bacteria. Overall, our findings indicated that FISH could be used as a rapid, accurate biosensor system for simultaneously detecting four types of coliform bacteria to ensure water safety.


Assuntos
Técnicas Bacteriológicas , Monitoramento Ambiental/métodos , Microbiologia da Água , Escherichia coli/isolamento & purificação , Fluorescência , Hibridização in Situ Fluorescente , RNA Ribossômico 16S
5.
Artigo em Inglês | MEDLINE | ID: mdl-31662034

RESUMO

Toluene is highly toxic and mutagenic, and it is generally used as an industrial solvent. Thus, toluene removal from air is necessary. To solve the problem of reducing high toluene concentrations with a short gas retention time (GRT), a quorum-sensing molecule [N-(3-oxododecanoyl)-L-homoserine lactone] (OHL) was added to a biotrickling filter (BTF). In this study, a BTF was used to treat synthetic and natural waste gases containing toluene. An extensive analysis was performed to understand the removal efficiency, removal characteristics, and bacterial community of the BTF. The addition of 20 µM OHL to the BTF significantly improved toluene removal, and more than 99.2% toluene removal was achieved at a GRT of 0.5 min when natural waste gas containing toluene (590-1020 ppm or 2.21-3.83 g m-3) was introduced. The maximum inlet load for toluene was 337.9 g m-3 h-1. Moreover, the BTF exhibited satisfactory adaptability to shock loading and shutdown operations. Pseudomonadaceae (33.0%) and Comamonadaceae (26.3%) were predominant bacteria in the system after a 98-day operation. These bacteria were responsible for toluene degradation. The optimal moisture content and low pressure drop for system operations demonstrated that the BTF was energy and cost efficient. Therefore, processing through a BTF with OHL is a favorable technique for toluene treatment.


Assuntos
Poluentes Atmosféricos/isolamento & purificação , Filtração/métodos , Microbiota , Percepção de Quorum , Tolueno/isolamento & purificação , 4-Butirolactona/análogos & derivados , 4-Butirolactona/metabolismo , Poluentes Atmosféricos/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Biodegradação Ambiental , Reatores Biológicos/microbiologia , Filtração/instrumentação , Gases/isolamento & purificação , Gases/metabolismo , Homosserina/análogos & derivados , Homosserina/metabolismo , Microbiota/genética , Tolueno/metabolismo
6.
Sensors (Basel) ; 19(6)2019 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-30909431

RESUMO

Chromium (VI) [Cr(VI)] compounds display high toxic, mutagenic, and carcinogenic potential. Biological analysis techniques (e.g., such as enzyme-based or cell-based sensors) have been developed to measure Cr(VI); however, these biological elements are sensitive to the environment, limited to measuring trace Cr(VI), and require deployment offsite. In this study, a three-stage single-chambered microbial fuel cell (SCMFC) biosensor inoculated with Exiguobacterium aestuarii YC211 was developed for in situ, real-time, and continuous Cr(VI) measurement. A negative linear relationship was observed between the Cr(VI) concentration (5⁻30 mg/L) and the voltage output using an SCMFC at 2-min liquid retention time. The theoretical Cr(VI) measurement range of the system could be extended to 5⁻90 mg/L by connecting three separate SCMFCs in series. The three-stage SCMFC biosensor could accurately measure Cr(VI) concentrations in actual tannery wastewater with low deviations (<7%). After treating the wastewater with the SCMFC, the original inoculated E. aestuarii remained dominant (>92.5%), according to the next-generation sequencing analysis. The stable bacterial community present in the SCMFC favored the reliable performance of the SCMFC biosensor. Thus, the three-stage SCMFC biosensor has potential as an early warning device with wide dynamic range for in situ, real-time, and continuous Cr(VI) measurement of tannery wastewater.


Assuntos
Bacillaceae/química , Fontes de Energia Bioelétrica/microbiologia , Técnicas Biossensoriais/métodos , Cromo/análise , Bacillaceae/metabolismo , Análise da Demanda Biológica de Oxigênio , Oxirredução , Águas Residuárias/análise
7.
Artigo em Inglês | MEDLINE | ID: mdl-29465296

RESUMO

The effectiveness of an airlift reactor system in simultaneously removing hydrogen sulfide (H2S) and ammonia (NH3) from synthetic and actual waste gases was investigated. The effects of various parameters, including the ratio of inoculum dilution, the gas concentration, the gas retention time, catalyst addition, the bubble size, and light intensity, on H2S and NH3 removal were investigated. The results revealed that optimal gas removal could be achieved by employing an activated inoculum, using a small bubble stone, applying reinforced fluorescent light, adding Fe2O3 catalysts, and applying a gas retention time of 20 s. The shock loading did not substantially affect the removal efficiency of the airlift bioreactor. Moreover, more than 98.5% of H2S and 99.6% of NH3 were removed in treating actual waste gases. Fifteen bands or species were observed in a profile from denaturing gradient gel electrophoresis during waste gas treatment. Phylogenetic analysis revealed the phylum Proteobacteria to be predominant. Six bacterial strains were consistently present during the entire operating period; however, only Rhodobacter capsulatus, Rhodopseudomonas palustris, and Arthrobacter oxydans were relatively abundant in the system. The photosynthetic bacteria R. capsulatus and R. palustris were responsible for H2S oxidation, especially when the reinforced fluorescent light was used. The heterotrophic nitrifier A. oxydans was responsible for NH3 oxidation. To our knowledge, this is the first report on simultaneous H2S and NH3 removal using an airlift bioreactor system. It clearly demonstrates the effectiveness of the system in treating actual waste gases containing H2S and NH3.


Assuntos
Amônia/isolamento & purificação , Reatores Biológicos , Gases/química , Sulfeto de Hidrogênio/isolamento & purificação , Amônia/farmacocinética , Animais , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Reatores Biológicos/microbiologia , Indústria Alimentícia , Gases/farmacocinética , Sulfeto de Hidrogênio/farmacocinética , Esgotos/química , Esgotos/microbiologia , Suínos/microbiologia
8.
Artigo em Inglês | MEDLINE | ID: mdl-29035671

RESUMO

This study was conducted to select electrogenic bacteria from wastewater sludge. Phylogenetic analysis revealed that Proteobacteria was the dominant phylum in the microbial fuel cell (MFC) during the decomposition process of organic pollutants. Five culturable bacteria strains - namely, Bacillus subtilis, Flavobacterium sp., Aeromonas hydrophila, Citrobacter freundii, and Stenotrophomonas sp. - have a double potential in dye removal and electricity generation. We inoculated the mixed electrogenic bacteria at a specific ratio and treated them with a triphenylmethane dye, Victoria blue R (VBR), to evaluate their electricity generation ability for the artificial and real wastewater. The results of the VBR shock-loading experiment indicated that the inoculated MFC could adapt to shock loading in 1-2 days and exhibited high removal efficiency (95-100%) for 100-800 mg L-1 VBR with a power density of 8.62 ± 0.10 to 34.81 ± 0.25 mW m-2. The selected electrogenic bacteria in the MFC could use VBR as only electron donor for power generation. The matrix effects of the real wastewater on VBR removal and electricity generation of MFC were insignificant. VBR degradation by the electrogenic bacteria involves a stepwise demethylation process to yield partially dealkylated VBR species. In addition, these results demonstrate the feasibility of inoculating culturable bacteria strains to develop an efficient MFC for purifying wastewater.


Assuntos
Bactérias/metabolismo , Fontes de Energia Bioelétrica/microbiologia , Corantes/metabolismo , Corantes de Rosanilina/metabolismo , Águas Residuárias/química , Poluentes Químicos da Água/metabolismo , Bactérias/química , Bactérias/classificação , Bactérias/isolamento & purificação , Biodegradação Ambiental , Eletricidade , Eletrodos , Filogenia , Esgotos/microbiologia , Eliminação de Resíduos Líquidos/métodos
9.
Sensors (Basel) ; 17(11)2017 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-29076985

RESUMO

The extensive use of Cr(VI) in many industries and the disposal of Cr(VI)-containing wastes have resulted in Cr(VI)-induced environmental contamination. Cr(VI) compounds are associated with increased cancer risks; hence, the detection of toxic Cr(VI) compounds is crucial. Various methods have been developed for Cr(VI) measurement, but they are often conducted offsite and cannot provide real-time toxicity monitoring. A microbial fuel cell (MFC) is an eco-friendly and self-sustaining device that has great potential as a biosensor for in situ Cr(VI) measurement, especially for wastewater generated from different electroplating units. In this study, Exiguobacterium aestuarii YC211, a facultatively anaerobic, Cr(VI)-reducing, salt-tolerant, and exoelectrogenic bacterium, was isolated and inoculated into an MFC to evaluate its feasibility as a Cr(VI) biosensor. The Cr(VI) removal efficiency of E. aestuarii YC211 was not affected by the surrounding environment (pH 5-9, 20-35 °C, coexisting ions, and salinity of 0-15 g/L). The maximum power density of the MFC biosensor was 98.3 ± 1.5 mW/m² at 1500 Ω. A good linear relationship (r² = 0.997) was observed between the Cr(VI) concentration (2.5-60 mg/L) and the voltage output. The developed MFC biosensor is a simple device that can accurately measure Cr(VI) concentrations in the actual electroplating wastewater that is generated from different electroplating units within 30 min with low deviations (-6.1% to 2.2%). After treating the actual electroplating wastewater with the MFC, the predominant family in the biofilm was found to be Bacillaceae (95.3%) and was further identified as the originally inoculated E. aestuarii YC211 by next generation sequencing (NGS). Thus, the MFC biosensor can measure Cr(VI) concentrations in situ in the effluents from different electroplating units, and it can potentially help in preventing the violation of effluent regulations.

10.
Artigo em Inglês | MEDLINE | ID: mdl-28489972

RESUMO

A novel two-chamber microbial fuel cell (MFC) operation with a continuous anaerobic-aerobic decolorization system was developed to improve the degradation of the triphenylmethane dye, Victoria blue R (VBR). In addition, bioelectricity was generated during the VBR degradation process, and the operation parameters were optimized. The results indicated that the VBR removal efficiency and electricity generation were affected by the VBR concentration, liquid retention time (LRT), external resistance, gas retention time (GRT), and shock loading. The optimal operation parameters were as follows: VBR concentration, 600 mg L-1; LRT, 24 h; external resistance, 3300 Ω; and GRT, 60 s. Under these operating conditions, the VBR removal efficiency, COD removal efficiency, and power density were 98.2% ± 0.3%, 97.6% ± 0.5%, and 30.6 ± 0.4 mW m-2, respectively. According to our review of the relevant literature, this is the first paper to analyze the electrical characteristics of a continuous two-chamber MFC operation and demonstrate the feasibility of the simultaneous electricity generation and decolorization of VBR.


Assuntos
Fontes de Energia Bioelétrica , Técnicas Eletroquímicas/métodos , Corantes de Rosanilina/análise , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Acinetobacter calcoaceticus/crescimento & desenvolvimento , Fontes de Energia Bioelétrica/microbiologia , Eletricidade , Eletrodos , Estudos de Viabilidade , Shewanella putrefaciens/crescimento & desenvolvimento , Águas Residuárias/química , Águas Residuárias/microbiologia
11.
J Biosci Bioeng ; 123(6): 679-684, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28254340

RESUMO

Angelica dahurica root (ADR), which shows strong antioxidant activity, is used in Chinese medicine. This study evaluated the tyrosinase inhibitory and antioxidant activities of ADR extracts fermented by four different probiotic bacteria: Bifidobacterium bifidum, Bifidobacterium lactis, Lactobacillus acidophilus, and Lactobacillus brevis. The ADR was first extracted using distilled water, 70% ethanol, and ethyl acetate, and then fermented by probiotic bacteria. The physiological characteristics of these fermented extracts, namely the antityrosinase activity, antioxidant activity, phenolic composition, and phenolic content, were evaluated and compared with those of unfermented extracts. Results showed that the water extracts after fermentation by probiotic bacteria exhibited the most favorable physiological characteristics. Among the extracts fermented by these probiotic bacteria, L. acidophilus-fermented ADR extract showed the most favorable physiological characteristics. The optimal IC50 values for antityrosinase activity, DPPH radical scavenging activity, and reducing power for L. acidophilus-fermented ADR extract were 0.07 ± 0.03, 0.12 ± 0.01, and 0.68 ± 0.06 mg/mL, respectively. Furthermore, the physiological activities of fermented extracts were considerably higher than those of unfermented extracts. The tyrosinase inhibition and melanin content of B16F10 melanoma cells, and cytotoxicity effects of the fermented ADR extracts on B16F10 cells were also evaluated. We found that the L. acidophilus-fermented ADR extract at 1.5 mg/mL showed significant cellular antityrosinase activity with low melanin production in B16F10 cells and was noncytotoxic to B16F10 cells. Among all probiotic bacteria, water-extracted ADR fermented by L. acidophilus for 48 h was found to be the best skincare agent or antioxidant agent.


Assuntos
Angelica/química , Fermentação , Bactérias Gram-Positivas/metabolismo , Monofenol Mono-Oxigenase/antagonistas & inibidores , Extratos Vegetais/farmacologia , Raízes de Plantas/química , Probióticos/metabolismo , Animais , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Inibidores Enzimáticos/isolamento & purificação , Inibidores Enzimáticos/farmacologia , Melaninas/biossíntese , Melanoma Experimental/patologia , Camundongos , Oxirredução , Extratos Vegetais/isolamento & purificação
12.
Molecules ; 17(1): 408-19, 2012 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-22217554

RESUMO

The extraction equilibrium of indium(III) from a nitric acid solution using di(2-ethylhexyl) phosphoric acid (D2EHPA) as an acidic extractant of organophosphorus compounds dissolved in kerosene was studied. By graphical and numerical analysis, the compositions of indium-D2EHPA complexes in organic phase and stoichiometry of the extraction reaction were examined. Nitric acid solutions with various indium concentrations at 25 °C were used to obtain the equilibrium constant of InR3 in the organic phase. The experimental results showed that the extraction distribution ratios of indium(III) between the organic phase and the aqueous solution increased when either the pH value of the aqueous solution and/or the concentration of the organic phase extractant increased. Finally, the recovery efficiency of indium(III) in nitric acid was measured.


Assuntos
Complexos de Coordenação/isolamento & purificação , Índio/isolamento & purificação , Querosene , Ácido Nítrico/química , Organofosfatos/química , Algoritmos , Quelantes/química , Simulação por Computador , Complexos de Coordenação/química , Concentração de Íons de Hidrogênio , Índio/química , Extração Líquido-Líquido , Modelos Químicos , Soluções
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...